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Abstract

Manipulating motion characteristics in videos is one of
the most interesting operations in video editing. By chang-
ing the motion presented in the video, users can either em-
phasize different contents or tell a different story with the
synthesized video. While being a powerful editing opera-
tion, the task is undeniably challenging. To make the synthe-
sized video seamless in appearance both spatially and tem-
porally, tedious and time-consuming manual editing and
tweaking are often required with existing editing tools.

This paper proposes a framework to assist users on edit-
ing small-scale video motions with ease. By limiting the
editing subject to small-scale video-motions, carefully uti-
lizing the results from motion estimation and solving a
space-time optimization to warp the video frames, the pro-
posed framework is capable of producing seamless videos
with certain motion characteristics with only simple user
inputs. Extensive experiments are conducted to show that
our method can produce visually pleasing results on a wide
range of videos with different motion characteristics.

1. Introduction
Motion is the major content in videos. Besides the pixel

values in each frame which depict the appearance of the
scene, correlation between pixels across frames —namely
video-motion—allows video to tell more of a story than
static images. Manipulating video-motion is thus consid-
ered to be one of the critical task of video editing.

However, editing video-motion is a difficult task that of-
ten poses the following challenges. First, naı̈ve ways to
modify video-motion can introduce serious artifacts in the
synthesized video, mainly spatial and temporal discontinu-
ities. The root cause is that every pixel has certain relations
with pixels in its spatial and temporal neighborhood. Di-
rectly modifying the motion without considering these re-
lations thus results in holes and seams within and across
frames. This problem becomes more severe when the extent
of modification is larger. Second, perfect motion informa-
tion is hard to extract in several scenes. Before the motion

(a) Motion localization and the spatial discontinuities 

(b) Motion concatenation and the temporal discontinuities 

Figure 1. An example of using our framework to perform (a) Mo-
tion Localization: localize the motion to occur only on the hand.
We show the spatial discontinuity at the mask boundary produced
by the naı̈ve masking method and the seamless results produced
by our framework. (b) Motion Concatenation: concatenating two
sets of frames (in this case, the ending and starting frames of this
video sequence). We plot the motion trajectory of the three se-
lected points in the original sequence and the synthesized sequence
produced by our framework. Note the three seamless trajectory
that formed three closed loops.

in a video can be modified, it is critical that the original
motion in the video being accurately analyzed. Unfortu-
nately, despite great advancement in the field of motion es-
timation and optical flow, the task remains challenging in
several cases. Thus, methods for editing video-motions that
rely on perfect motion estimation results are likely to fail
in practice. Finally, user input for editing video-motion can
be inaccurate. The task of editing video-motion requires
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several low level information to be processed and aggre-
gated. Without professional knowledge and training, it is
hard for users to provide inputs that are ideal for those low
level tasks. Thus, methods that aims to minimize the user
efforts should consider the imperfections in the user inputs
and deal with them accordingly. With the presence of these
challenges, existing video-motion editing tools are fairly
limited in the type of video they can handle and the type
of editing operations they could provide.

In this paper, we draw insights from the above consider-
ations, and design a framework that aims at assisting users
to modify video-motion with ease. By limiting its usage to
small-scale video-motion editing (i.e. the extent of modifi-
cation on the motion will not be too large), the framework is
capable of offering two motion-editing operations: motion
localization and motion concatenation. Motion localization
is an editing operation that allows users to make the motion
only happen within part of the subject while the rest keeps
still. More specifically, users can edit the video-motion to
happen in only part of the scene by simply drawing a mask
on a particular frame. Motion concatenation is another
editing operation that allows users to make seamless tran-
sition between frames that are similar in their appearance
and motion. Through this operation, users can either trun-
cate redundant content of the video while keeping it visu-
ally pleasing or even create a seamless-looping video that
presents an endless repeating motion.

Our framework relies on the result extracted by exist-
ing optical flow implementations, but in the mean while
accounting for the possible errors in their results. Specif-
ically, instead of assuming the motion estimation result is
perfect, our framework computes and references the confi-
dence value of the estimated motion on each pixel. Finally,
to account for the inaccuracy of the user input and further
reduce the users’ burden, we proposed methods to refine the
user inputs when performing the two editing operations.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the proposed
framework in detail. Section 4 evaluates our framework on
videos with different types of motion. Finally, Section 5
concludes the paper.

2. Related work
Previous work related to video-motion editing differ-

entiate with each other by targeting on different types of
videos or different types of video-motion editing opera-
tions. Among those literatures, the closest to ours are the
works related to cinemagraph creation. A cinemagraph is a
still photograph that contains within itself a repeating mo-
tion in part of the subject, in contrast with the stillness of
the rest of the image(for example, a girl keeps still in ex-
pressions and postures with her hair blowing in the breeze).
Though lacking a formal definition, cinemagraph is often

considered to be a video sequence with its motion being
localized and repeating. From this point of view, creating
cinemagraph is a task of localizing video motion and con-
catenating the ending and the starting frames of the video,
which is similar to the targeted task in this paper.

Several software and tools aims at creating cinemagraphs
from video are available on the web, such as [2] and [1].
To localize motion, they adopt the basic approach we re-
ferred to as the naıve masking method. The naıve mask-
ing method apply the user drawn mask on every frame in
the video, so that only the content in the mask will change
over-time, while regions outside the mask being a static im-
age. However, this simple strategy often results in severe
artifacts in the output video in many cases. Besides these
commercial software, [13] and [6] has extended the naıve
masking method with the aid of computer vision technology
such as video stabilization and loop selection. However, the
problem of spatial and temporal visual discontinuities are
not fully addressed and handled in their paper.

Another work closely related to ours is [3]. The method
proposed in their paper facilitates not only the creation of
cinemagraphs but also other applications such as visualiz-
ing or emphasizing motion in video. Though they also ad-
dressed the spatial and temporal discontinuities likely to ap-
pear during video-motion editing, they design different ap-
proaches for these two problems. Additionally, the strategy
they use for resolving temporal seams is essentially select-
ing transitions in video frames. In contrast, in this paper
we design a unified framework for resolving the spatial and
temporal discontinuity. Instead of selecting good transitions
in the video frame, we develop ways to warp each frame to
resolve the temporal seams. This makes the cases we can
handle different from their work.

Despite these works, there are other works target on syn-
thesizing new motion sequence such as [10], [16] and
[14], which aim at modifying the scale of video-motion.
And a series of work for creating video textures from a
video [12] [8], a set of images [9], a single image [5], and
images on the web [17]. Although these works target on
video-motion editing, they focus on other aspects of this
task and look into problems different from this paper.

3. Video-motion editing framework

In this section, we describe the proposed framework in
detail. The section is organized as follows. Section 3.1 ex-
plains how to estimate motions and evaluate the confidences
of the estimated motions. Section 3.2 proposes a framework
for general warping-based video processing. We use it in
Section 3.3 and 3.4 to perform two video-motion editing
operation: motion localization and motion concatenation.
Finally, Section 3.5 presents the method we use to refine
the user input.



3.1. Motion estimation and confidence

Before modifying the motion characteristics of the
video, the original motion of the video should be extracted.
Given two images It1 and It2 , the dense motion field ut1→t2

can be estimated by optical flow algorithms [4] such that:

x′ = x + ut1→t2
x , (1)

where x is the position of a pixel in It1 and x′ is the position
of its corresponding pixel in It2 . To represent the correspon-
dences between different frames more concisely, we define
a mapping function: M t2

t1 (i) = j if xt2
j = xt1

i + ut1→t2
x1

.
That is, M t2

t1 (i) = j if the pixel xj in It2 corresponds to the
pixel xi in It1 .

In addition, instead of assuming the extracted motion to
be perfect, our framework account for the possible error by
computing a confidence value for each pixel. We use the
bidirectional consistency measure with the intuition that if
the motion is correctly estimated, the forward and backward
flows should compensate each other as much as possible.
That is, moving a pixel x with its forward motion ut1→t2

x

to its corresponding pixel x′ in the next frame, followed by
the corresponding pixel’s backward motion ut2→t1

x′ , should
take us back to pixel x. Specifically, the motion confidence
Ct1→t2 for the pixel x is measured as

Ct1→t2(x) = max(1− |(ut1→t2
x + ut2→t1

x′ )/K|2, 0) (2)

where K is a fixed threshold, and 0 ≤ Ct1→t2(x) ≤ 1.
Note that both ut1→t2

x and x′ could have sub-pixel ac-
curacy. Whenever we need to extract the sub-pixel value
of a function f defined on integral coordinates, the bilinear
interpolation strategy as below is used throughout the paper

f(x′) ≡ (1− α)(1− β)f(bx′c) + α(1− β)f(bx′c+ (1, 0))

+ (1− α)βf(bx′c+ (0, 1)) + αβf(bx′c+ (1, 1)), (3)

where x′ − bx′c = (α, β)

3.2. Warping-based video processing
Recently, warping-based approaches have been used in many

different image/video processing problems such as video stabi-
lization [11], retargetting [15] and disparity mapping [7]. Most
warping-based video processing approaches represent each frame
as a quad mesh and find the new vertex positions of all quad
meshes to satisfy sparse position constraints while avoiding spa-
tial and temporal distortion. The output video is then synthesized
according to the deformed quad meshes.

Here, we address a framework for general warping-based video
processing and utilize it for video-motion editing. In the frame-
work, video frames are represented by a set of quad meshes,
V = {Vt|1 ≤ t ≤ T, t ∈ N}, where Vt is the quad mesh for
It. Although it is possible to use larger quad sizes for efficiency,
the quad size is set to 1 × 1 for all the results in this paper, i.e.
every pixel is taken as a vertex in the quad mesh. The deformed
quad meshes V̂ is created by adjusting the vertex positions of V

through minimizing the following energy function E subject to
some additional constraints:

E(V̂) = λSES(V̂) + λTET (V̂), (4)

where ES and ET measures the spatial and temporal distortion re-
spectively; λS and λT are weights balancing the spatial and tem-
poral distortion, whose value depend on the problem to be solved.

In later sections, we will see the two motion-editing operation
can be performed with this framework, by imposing different con-
straints and setting different values for λS and λT . Before that, we
introduce how the spatial and temporal distortion are measured in
our framework.

3.2.1 Spatial distortion

The term ES measures the extent that the spatial relation, which in
our case being the position and the shape of the quads, are distorted
by the deformation.

ES(V̂) =

T∑
t=1

∑
xt
i∈Vt

∑
xt
j∈N (xt

i)

wS(xti,x
t
j)|(x̂ti−x̂tj)−(xti−xtj)|2

(5)
where N (xti) is the set of four neighboring vertices of xti in Vt,
x̂ti ∈ V̂t is the deformed vertex position of xti , and wS is a weight
to allow neighboring vertices to have more spatial distortion if they
belong to different objects. In Equation 5, for each edge in the
original quad mesh formed by two neighboring vertices, xti and
xtj , we prefer that the corresponding edge (x̂ti , x̂

t
j) in the deformed

mesh maintains the same orientation and size by measuring the
deviations. As for the weight wS , by assuming the vertices on the
same object undergo similar motions, we define wS based on the
motion similarity of the vertices:

wS(xti,x
t
j) = exp

−(ut→t+1

xt
i

−ut→t+1

xt
j

)2/σ2
S

(6)

where σS is a given constant.

3.2.2 Temporal distortion

Similar to ES , the term ET measures the extent that the tempo-
ral relation, which in our case being the motion between frames,
are distorted by the deformation. Specifically, we calculate the
difference between the motion in the original sequence and the
deformed sequence.

ET (V̂) =

T−1∑
t=1

(
∑

xt
i∈Vt

wT (xti,x
t+1
i′ )|(x̂ti − x̂t+1

i′ )− (xti − xt+1
i′ )|2+

∑
xt+1
j ∈Vt+1

wT (xt+1
j ,xtj′)|(x̂t+1

j − x̂tj′)− (xt+1
j − xtj′)|2)

where i′ = M t+1
t (i) is the vertex corresponding to xti in It+1;

j′ = M t
t+1(j) is the vertex corresponding to xt+1

j in It; and wT
is the weight that accounts for the reliability of the estimated mo-
tion. Equation 7 accumulates the difference between the original
motion xti − xt+1

i′ and the modified motion x̂ti − x̂t+1
i′ for each



vertex. We do so for both forward (the xti ∈ Vt part) and back-
ward (xt+1

j ∈ Vt+1) motions. wT is defined by the confidence of
motion estimation as:

wT (xt1p ,x
t2
p′ ) = Ct1→t2(xt1p ). (7)

3.3. Motion localization
Motion localization is the editing operation that allows users to

make the motion only happen within part of the subject while the
rest keeps still. To perform motion localization, user is required to
draw a mask Ω on a single frame, specifying the part of the subject
in the scene where motion should be preserved.

The major challenge of motion localization is that, if the
pixel on the boundaries of the masks are not still in the origi-
nal video(e.g. the mask is drawn on part of a moving subject, or
the original video contains camera motion), applying the same
mask Ω to every frame could result in serious spatial disconti-
nuities through out the video. To resolve this problem, we per-
form motion localization by utilizing the framework proposed in
Section 3.2 with additional spatial constraints that pixels on the
boundary should stay still throughout the video:

minimize
V̂

E(V̂) (8)

subject to x̂ti′ = x1
i ,∀i ∈ {k|x1

k ∈ ∂Ω}, 1 ≤ t ≤ T (9)

where ∂Ω is the boundary of Ω and i′ = M t
1(i) is the vertex index

of the correspondence of x1
i at frame It. The boundary alignment

constraint (Equation 9) makes all correspondences of the vertex
x1
i ∈ ∂Ω in any other frame to have the same position as x1

i , thus
aligning contours.

Note that in motion localization, we should allow temporal de-
formation because localizing motion indeed changes the original
motions of points along the boundary of the mask. In this case,
λT is set to be 0.1 and λS is set to be 0.9. Larger λT preserves the
original motions more but makes the output video contains spatial
seams.

3.4. Motion concatenation
The motion concatenation operation aims at letting users to

make seamless transitions between two frames Im and In. Though
we require the two frames to be similar in appearance and motion,
noticeable transitions, namely the temporal discontinuities, could
still be perceived if we do not adjust each frame of the video. If
we simply warp the two frames to be identical with each other, the
original temporal discontinuities would appear in other frames. To
smoothly eliminate the temporal discontinuity, we utilize the gen-
eral warping-based video processing framework to adjust every
frame in the video, by solving the optimization with an additional
temporal constraint to force Im and In resembling each other:

minimize
V̂

E(V̂) (10)

x̂mj′ = x̂nj , ∀j ∈ {k|xmk ∈ Ω} (11)

where j′ = Mm
n (j) is the vertex index of the correspondence of

xnj in Im. By solving the above optimization, the visual difference
of the Im and the In will be distributed across different frames.

Thus, the induced content distortion is rather small, but overall
they compensate the rather large difference between Im and In.

In motion concatenation, we want to better preserve the object
motions while eliminating the temporal discontinuity. In this case,
λT is set to be 0.5 and λS is set to be 0.5. ES plays as a regular-
ization term here to prevent the situation that wT is zero when the
estimated motion is unreliable.

3.5. User input refinement

3.5.1 Optimal mask Ω

In motion localization, the user will draw a region-of-interestR to
specify where motion should be preserved on frame f . However,
the boundary of R may be hard to be align across frames if the
adopted algorithm fails the estimate the motion of pixels along
the boundary. Thus, we would like to find an optimal mask Ω
to prevent unreliable boundary alignment. First, we dilate R by
several pixels to be O, and then find an optimal mask Ω where
R ⊆ Ω ⊆ O by minimizing the following energy function:

ESB(∂Ω|T ) =
∑

x
f
i ∈∂Ω

(1−min{Cf→t(xfi )|1 ≤ t ≤ T}).

(12)

ESB measures the unreliability of the estimated motions between
frame f and every other frames along the boundary of Ω, where
the reliability of a pixel is defined by the minimum confidence
between the pixel in frame f and its correspondence in any other
frame. We use the minimum since any unreliable estimated motion
could result in artifacts on the boundary. The best ∂Ω minimizing
ESB can be found by searching for the shortest path on the graph
constructed by the below strategy.

Figure 2. Refining the user specified mask boudary ∂Ω by finding
the shortest path in G.

As shown in Figure 2, we break the region G = O\R to obtain
a graph with each pixel in G being the vertices, and assign directed
edges between neighboring pixels. The weight of an edge that
goes from x1

i to x1
j is computed as (1 − min{C1→t(x1

j ). The
optimal boundary ∂Ω thus corresponds to the shortest path that
goes from one of the starting vertices(colored as yellow) to one
of the ending vertices(colored as green) on G, which could be
efficiently computed by most of the shortest path algorithms.

3.5.2 Optimal transition frame In

In motion concatenation, user creates a transition in video by spec-
ifying two frames Im and In that should be concatenated. Given



Im, our system refines In by selecting the best frame among
frames near In according to the following criteria: the motion es-
timated from In to Im should be reliable. Specifically, we pick
the frame that has the lowest energy among all frames near In:
function ETB :

ETB =
∑

xm
i ∈Ω

(1− Cm→n(xmi )) (13)

ETB measures the unreliability of the estimated motions between
Im and In;

As shown in Figure 3, it is interesting to point out that though
we do not estimate the energy according to the appearance sim-
ilarity between frames explicitly, the two local minimum in the
curve actually corresponds to the frame that the make-up motion
is about to repeat again. This is because that the estimated flow
will be more robust when the two frame is more similar in their
appearance and motion, which is a desired property for our case.

Figure 3. Visualizing E′TB for the Make up sequence (Figure 1).

4. Results
In the result section, we evaluate both the motion localization

and the motion concatenation operation on video sequences with
different motion characteristics. We choose to demonstrate the ef-
fectiveness of our technique by using these two operations for cre-
ating high quality cinemagraphs. Specifically, we first use the mo-
tion localization operation to modify the video sequence to have
motion occur only in part of the scene, and then we use the the
motion concatenation operation to require the last few frames con-
catenate with the first frame. The final synthesized video is a video
with both localized and repeating motion, which are the two major
elements in a cinemagraph.

Before viewing the results, we give an overall explanation
about the figures shown in this section. Figures in this section
mainly illustrates how and how good our method is able to solve
the spatial and temporal discontinuities and produces high qual-
ity cinemagraphs. For spatial discontinuities, we demonstrate our
effectiveness by comparing individual frames generated by our
method to those generated by the naı̈ve masking method. For tem-
poral discontinuities, which actually exists across frames, we de-
veloped the following way to better visualize them using static im-

ages. We pick certain points and visualize their two-dimensional
motion trajectories in the original sequence, the sequence after
motion localization, and the sequence after motion concatenation.
The motion trajectories are drawn by tracking the points according
to the estimated flow between every two neighboring frames. The
trajectories start from frame 0 and end in frame T. To better visual-
ize the trajectories, we fit a cubic spline to the sparse positions of a
certain point in each frame, and zoom in by a factor of 4. We also
color the trajectories from its start to its end, following the order of
the HSV color wheel from 0 degree to 360 degree, which is iden-
tical to the color order of a rainbow(red, orange, yellow, green,
blue, indigo and purple). By comparing the trajectories in three
different sequences, we show how our method intended to close-
out the gaps between the starting point and the ending point of the
trajectories, which corresponds to the temporal discontinuities in
the original sequence. For cases whose motion is complex, we
also demonstrate the effectiveness of incorporating the confidence
measure to our method.

In the following, we divide the test cases into three groups ac-
cording to the motion characteristics contained in each sequence:
rigid motions, non-rigid motions and complex motions, and dis-
cuss them separately. The final results are best viewed in video
form. Please see the supplementary materials for the synthesized
video sequences and more other results.

4.1. Rigid motions

Rigid motions refers to the motion class with objects moving
rigidly. Such motions can often be faithfully captured and depicted
by an optical flow field. Thus, the spatial and temporal boundary
constraints imposed by flows can provide very good cues on cor-
recting appearance discontinuity both spatially and temporally.
Make up. Figure 1 shows the result of this video sequence.
The original sequence contains one’s hand performing a repeti-
tive making up motion. The major challenge rises as the contour
specified by the user go through the wrist, which moves up and
down along time. Without taking motion into account, there will
be noticeable visual seems. Another challenge resides in the mis-
alignment of the first frame and the last frame. Although the con-
tent of these two frames are visually similar, it is unlikely that the
positions of the moving hand perfectly align to each other. These
challenges together lead to severe spatial and temporal discontinu-
ities when applying the naı̈”ve masking method.

In this example, to reduce spatial discontinuities along the
boundary, our method tends to shift the position of the hands at
each frame to meet the static wrist outside the mask. For temporal
discontinuities, we pick three points and visualize their trajectories
in Figure 1. The starting and ending points of the trajectories are
originally separate by a certain distance and thus results in tempo-
ral discontinuities. After motion localization, the gap still exists,
though the gap of the green point is greatly reduced already, as
the green point lies near the aligned boundary. Finally after mo-
tion concatenation, all the gaps are fully resolved with the starting
points and ending points of the trajectories stick to the same posi-
tion. Notice how our method fills the gap while in the mean time
preserving the original shape the motions between frames. Our
resulting animated sequence looks natural in its motion and shows
great improvements against the naı̈ve masking method.



(f) 

(a) (b) (c) 

(d) (e) 

Figure 4. Feeding dog. (a)The user drawn mask on the first frame.
(b)Part of a frame produced by the naı̈ve masking method. (c)Part
of a frame produced by our motion localization operation. We
also visualize the motion trajectories of the selected points in the
(d)original sequence (e)the sequence after motion localization, and
(f)the sequence after motion concatenation.

Feeding dog. This is a testing sequence used in Tompkin et al.’s
paper [13]. In this example, the user tries to generate a sequence
that the dog bites the bone endlessly, while the body of the dog
and the man remain still. The result provided by Tompkin et al.
suffers from severe artifacts of obvious discontinuities around the
dog’s neck and the man’s shoulder. In addition, there is also a
noticeable jump between the first frame and the last frame, despite
the quick motion in the sequence. Our method is able to overcome
the discontinuities and generate a seamless looping sequence.

Mice. Here we evaluate our method on a sequence captured by
a hand-held camera. Due to the drastic handshake, instead of di-
rectly computing the optical flow between the first frame and other
frames, we accumulate the flow between neighboring frames from
frame 0 to frame T. Figure 5 compares our result to the one gener-
ated by the naı̈ve masking method. As the global camera motion
causes the originally static background objects to move drastically,
directly masking and pasting without adjusting the contents results
in severe spatial discontinuities. As for the motion trajectories, due
to the hand shake, all three points have drastic motions in the orig-
inal sequence. After our motion localization operation, the green
point on the background is nearly still, while the other two points
still remains the motion of the mouse. After motion concatena-
tion, the motions are modified to be loopable. Overall, our method
is able to overcome the drastic camera motion, int the mean time
preserving the subtle motion of the mouse.

4.2. Non-rigid motions
Non-rigid motions refer to the motion class with the objects

performing elastic motion, such as pouring liquids, changing of
facial expressions, blowing clothes and so on. For these types
of motions, usually the estimated flow does not necessarily cor-

(a) 

(d) 

(b) (c)  

(e) (f) 

Figure 5. Mice. (a)The user drawn mask on the first frame.
(b)Part of a frame produced by the naı̈ve masking method. (c)Part
of a frame produced by our motion localization operation. We
also visualize the motion trajectories of the selected points in the
(d)original sequence (e)the sequence after motion localization, and
(f)the sequence after motion concatenation.

respond to the true motion in the physical world. However, the
motion field is still capable of capturing time-varying appearances
of the objects well. Thus, warping with the flow field still gives
reasonable results.

(a) (b) (c) (d) 

Figure 6. Pouring wine. (a)The mask specified by the user on the
first frame. We compare the region of interest in (b)the first frame,
(c)the T-1 frame generated by naı̈ve masking and (d)the T-1 frame
generated by our method. Notice the discontinuity around the bot-
tle in (c) and different amount of wine in (c) and (d). Illustrating
how our method resolves the temporal discontinuity.

Pouring wine. Pouring liquid is one of the popular cinemagraph
topics users like to explore. Although simple in concept, it could
be quite challenging for the naı̈ve masking techniques to reach
high quality results, as we demonstrated in this example. With the
naı̈ve masking methods, first, in order to avoid spatial disconti-
nuities, the performer must try hard to keep the pouring bottle as
still as possible. Second, as the amount of wine in the glass keep
increasing throughout the sequence, there is probably no intuitive
way to create a seamless looping sequence directly.

Our method is able to overcome these difficulties and greatly



reduces the effort users need to pay on setting up the scene. As the
boundary of the user-specified mask goes across part of the bot-
tle, the bottle is stabilized after motion localization. The seamless
looping effect is produced by manipulating the shape of the wine
in the last few frames, as illustrated in Figure 6. With the red dot-
ted line, we can see our method ”reduces” the amount of wine in
the last few frames, in order to make the resulting sequence loop
back to the first frame seamlessly.

(a) (b) (c) (d) 

Figure 7. Pouring juice. (a)The mask specified by the user on the
first frame. We compare the region of interest in (b)the first frame,
(c)the T-1 frame generated by naı̈ve masking and (d)the T-1 frame
generated by our method. Notice that the synthesized frame (d)
has a much similar appearance with (b) than (c). Illustrating how
our method resolves the temporal discontinuity.

Pouring juice. This is another interesting example on liquid pour-
ing. This example gives a clearer look on how the seamless effect
is produced by our method. In the original sequence, the liquid
in the first frame has a different appearance (both in shape and
texture) with the one in the last frame, causing noticeably discon-
tinuous transition every time advancing to the next loop.

As the estimated flow actually interprets the sequence as a non-
rigid object changing its shape at a fixed position, our method can
create a seamless transition by making the liquid in the last few
frames grow thicker to resemble the liquid in the first frame.

Eating. This is another type of non-rigid objects. The original
sequence presents a boy chewing the sandwich. Apparently the
performer is unlikely to stay still during chewing, not even men-
tioned how hard it would be for one to perform a chewing motion
that could loop seamlessly. Applying the naı̈ve masking method
gives poor results that comes with severe spatial and temporal dis-
continuities. Our approach works out by manipulating the shape
of the face, and is able to achieve high quality results despite the
change of lighting conditions across frames.

4.3. Complex motions
Complex motions refers to the class of motions that cannot be

well represented by two-dimensional optical flow field. Exam-
ples include burning flames and changing numbers on electronic
clocks. These cases point out the necessity of incorporating the
confidence measure for the estimated flow into our system. Flows
with lower confidence values would be discarded, preventing them
from messing up the results. It is interesting to mention that, in the
case where almost every flow on the complex objects is considered
unreliable, the objects will actually remain the same as in the orig-
inal sequence. In this case, since the motion of complex objects
are originally full of spatial and temporal discontinuities, leaving

(a) 

(d) 

(b) (c) 

(e) (f) 

Figure 8. Eating. (a)The user drawn mask on the first frame.
(b)Part of a frame produced by the naı̈ve masking method. (c)Part
of a frame produced by our motion localization operation. We
also visualize the motion trajectories of the selected points in the
(d)original sequence (e)the sequence after motion localization, and
(f)the sequence after motion concatenation.

the frames untouched often gives acceptable results.

Pedestrain light. In this sequence, the user tries to generate a se-
quence with the pedestrian light counting down from 5 to 1 repeat-
edly. The original sequence contains mainly two parts of motions.
One is the camera motion due to the drastic handshake and the
other is the motion of the time counter (changing numbers on the
light patterns). The main challenge is thus to remove the global
camera motion while preserving the local counting down motion.

Figure 9 shows the results obtained by our method with and
without the confidence map. As the counting down motion can’t
be properly represented with a 2-D vector field, the flow estimation
can fail dramatically. Warping without taking the confidence mea-
sures into account may cause the result to corrupt since pixels are
forced to adjust their positions according to wrong flows. In this
sequence, the confidence measure improves the result by greatly
reducing the impact of the unreliable constraints and keeping the
pixels at their original positions.

Stove. In this sequence, the user tries to generate a cinemagraph
with the fire burning endlessly. Similar to the previous example,
we show the results obtained with and without the confidence mea-
sure. As the motion of the flame is hard to capture with optical
flow estimation, optimizing according to the wrong flow produces
noticeable artifacts. In contrast, by evaluating the confidence of
the flow, our method leave the fire to its original appearance but
the final sequence is still able to loop naturally.



(a) 

(d) 

(b) (c) 

(e) (f) 

Figure 9. Pedestrain light. (a)The user drawn mask on the first
frame. (b)Part of a frame produced by the naı̈ve masking method.
(c)Part of a frame produced by our motion localization operation.
(d)the confidence map of the flow between the first frame and
the last frame. We also compare the motion concatenation result
(e)with and (f)without the confidence map.

(a) (b) (c) 

Figure 10. Stove. (a)The user drawn mask on the first frame and
the confidence map of the flow between the first frame and the last
frame. We also compare the motion concatenation result (b)with
and (c)without the confidence map.

5. Conclusions

In this paper, a warping based video processing framework is
proposed. We demonstrate how this framework can facilitate in-
teresting operations for video-motion editing, and effectively re-
solve the spatial and temporal discontinuities. We also evaluate
the proposed method on various type of videos and provide de-
tail analysis on how our method work in practice. We believe our
work has further investigated and derived insights to the problem
of video-motion editing.
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[12] A. Schödl, R. Szeliski, D. H. Salesin, R. S. D. H. Salesin, and
I. Essa. Video textures. In Proceedings of ACM SIGGRAPH.
2

[13] J. Tompkin, F. Pece, K. Subr, and J. Kautz. Towards moment
images: Automatic cinemagraphs. In Visual Media Produc-
tion (CVMP), 2011 Conference for, pages 87–93, November
2011. 2, 6

[14] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman.
Phase-based video motion processing. ACM Trans. Graph.,
32(4):80:1–80:10, July 2013. 2

[15] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee. Optimized
scale-and-stretch for image resizing. ACM Trans. Graph.,
27(5, article 118), 2008. 3

[16] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and
W. T. Freeman. Eulerian video magnification for revealing
subtle changes in the world. ACM Trans. Graph. (Proceed-
ings SIGGRAPH 2012), 31(4), 2012. 2

[17] X. Xu, L. Wan, X. Liu, T.-T. Wong, L. Wang, and C.-S.
Leung. Animating animal motion from still. ACM Trans.
Graph., 27(5):117:1–117:8, 2008. 2

http://www.icinegraph.com/
http://kinotopic.com/

